
DEVELOPING A BLAS LIBRARY
FOR THE AMD AI ENGINE

1

Tristan Laan, Tiziano De Matteis (t.de.matteis@vu.nl)
VU Amsterdam

H2RC – November 22, 2024

mailto:t.de.matteis@vu.nl

CAMBRIAN EXPLOSION OF “AI” HARDWARE

2

Source: CerebrasSource: Sambanova Source: AMD /Xilinx Source:
Tenstorrent

Source: Intel
Source: Groq

Source: Cerebras Source: Sambanova

Source: AMD /Xilinx Source:
Tenstorrent

Each has its own characteristics…but they
are all spatial architectures that can be

programmed using a dataflow approach

CAMBRIAN EXPLOSION OF “AI” HARDWARE

3

Source: CerebrasSource: Sambanova Source: AMD /Xilinx Source:
Tenstorrent

Source: Intel
Source: Groq

Source: Cerebras Source: Sambanova

Source: AMD /Xilinx Source:
Tenstorrent

Each has its own characteristics…but they
are all spatial architectures that can be

programmed using a dataflow approach

They are targeting ML worloads: can we use them for
something else?

Can we do it productively?

THE SW ECOSYSTEMS … FOR ML USERS

Manufacturers provide
integration with high-level

ML programming
frameworks

(Pytorch/TensorFlow) and
pre-trained models

ready-to-use

4

Source: AMD /Xilinx

Source: Cerebras

Source:
Tenstorrent

THE SW ECOSYSTEMS … FOR NON-ML USERS

For all the rest, we have to rely on lower-level APIs. For instance vector add on AMD AI Engine:

5

def vector_add(x, y):
return x+y

void vector_add(input_window<int32> *x,
input_window<int32> *y, output_window<int32> *out,
int N) {
 for (unsigned i = 0; i < N / 16; ++i) {
 aie::vector<int32, 16> vx =
window_readincr_v<16>(x);
 aie::vector<int32, 16> vy =
window_readincr_v<16>(y);
 aie::vector<int32, 16> vout = aie::add(vx, vy);
 window_writeincr(out, vout);
 }
}

Business logic
AMD Versal AI Engine

class simpleGraph : public graph {
private:
 kernel vadd; input_plio x, y; output_plio out;
public:
 simpleGraph() {
 vadd = kernel::create(vector_add);
 source(vadd) = "kernels/vadd.cpp";
 x = input_plio::create("x", plio_32_bits, "d/x.txt");
 y = input_plio::create("y", plio_32_bits, "d/y.txt");
 out = output_plio::create("out", plio_32_bits, "o.txt");
 connect<window<256>> net0(x.out[0], vadd.in[0]);
 connect<window<256>> net1(y.out[0], vadd.in[1]);
 connect<window<256>> net2(vadd.out[0], out.in[0]);
 }
}

#include <ap_int.h>
#include <hls_stream.h>
#include <ap_axi_sdata.h>

extern "C"{
 void mm2s(ap_int<32> *mem, int size, hls::stream<qdma_axis<32, 0,
0, 0>> &s){
#pragma HLS INTERFACE m_axi port = mem offset = slave bundle = gmem
#pragma HLS interface axis port = s
#pragma HLS INTERFACE s_axilite port = mem bundle = control
…

..and:
● Configuration
● Placement info
● Compilation files
● …

A total of 300+ lines of code to simply add two vectors. This requires knowledge
about the HW, the API, how to optimize, …

HOW TO AVOID AN “HARDWARE LOTTERY”

We need proper programming abstractions, open-source libraries of reusable components, and
guidelines to democratize access to ML Accelerators

6

Despite the promise of massive parallelism, the scientific and HPC communities have yet to
systematically explore the use of spatial devices in areas other than ML

Our work-in-progress project is AIEBLAS, a an open-source implementation of Basic Linear
Algebra Routines (BLAS) for the AMD AI Engine (AIE) spatial architecture. Our goals are:

▷ To facilitate the rapid developments of numerical applications
▷ Leveraging the hardware unique characteristics
▷ Offering a library that can be easily extend

https://github.com/atlarge-research/AIE-BLAS

https://github.com/atlarge-research/AIE-BLAS

DENSE NUMERICAL ALGEBRA ON AMD AI ENGINES

The AMD AI Engines are being offered in data center
acceleration card, and commodity CPUs1

71https://www.amd.com/en/technologies/xdna.html

Let’s consider a VCK5000 (data center card):

▷ An array of 8x50 AIEs (400 in total):

○ Each one with 32 KB local memory and a VLIW

vector processor

○ Each can communicate with neighbours or

non-neighbour AIEs

▷ Programmable Logic (PL) for custom hardware

The AIEs can be programmed using the Adaptive Dataflow (ADF) API, the application is
represented by a dataflow graph of kernels scheduled one the AIEs.

This work was supported in part by AMD under the HACC program

https://www.amd.com/en/technologies/xdna.html

AIE-BLAS: A BLAS LIBRARY FOR THE AMD AI ENGINE (WIP)

9

FIRST RESULTS

Comparison VCK5000 against OpenBLAS running on a 2x10-cores Xeon Silver 4210R.

10Similar behavior with GEMV

FIRST RESULTS: W/O MEMORY ACCESSES

11

Comparison VCK5000 against OpenBLAS running on a 2x10-cores Xeon Silver 4210R.

no
no

Accessing off-chip memory is non trivial

LEVERAGING MULTIPLE AIES

12

Each PL-AIE connection supports
4 GB/s (312 connections in total)

Exp.
result (4

AIEs)

Multi-AIEs implementation is necessary

no

AIE-BLAS: NEXT STEPS

A BLAS porting for AMD AI Engine architecture, to facilitate the
development of numerical applications

13

https://github.com/atlarge-research/AIE-BLAS

Write good code for spatial accelerator is complicated also for experts. Next steps:

▷ Support for multi-AIE implementation
▷ Optimize memory accesses and tiling
▷ Favor dataflow composability
▷ Coverage
▷ Considering to other spatial architectures

https://github.com/atlarge-research/AIE-BLAS

THANK YOU!

14

